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6 Natural Selection

6.1 Introduction

Natural Selection

Natural selection violates the Hardy-Weinberg assumptions by either

• changing viability based on genotype, or

• changing fertility based on genotype

The combination of viability and fertility of an individual defines its fitness.

It is also fundamental to the theory of evolution. It is the force that makes evolution “adaptive”, that makes
evolution “progress” in time. To truly understand evolution, we need to know the

• environments and how they affect phenotypes to determine fitness,

• developmental processes that convert genotypes into phenotypes, and

• changes in genetic composition of the population (population genetics).

Questions About Natural Selection

• How do allele frequencies change in response to selection?

• How does selection acting on diploid individuals change allele frequencies over time?

• How much difference does a small change in fitness make?

• Under what conditions can an equilibrium be obtained?

• How does natural selection affect the overall fitness of the population? Is there improvement?



Detecting Selection

Positive selection (meaning an allele is favored by selection) at the molecular level has been a very hot area
of research for much time.

• HIV-1 envelope gene (Nature 376: 125)

• Major histocompatibility complex (Nature 335: 167)

• Tumor suppressor gene BRCA1 (Nature Genetics 25: 410)

Some current issues in detecting selection include:

• Detect selection at specific sites in a sequence when most sites are not subject to selection.

• Detect selection in non-coding regions of genomes, those regions that do not code for proteins.

• Detecting selection in certain lineages and not others. For example, finding those genome sites that
have been selected in humans, but not chimpanzees for example.

Natural Selection

Definition: viability (v)

Viability is the probability of survival to adulthood and reproduction age.

Definition: fertility

Fertility is the propensity/ability of an individual at reproductive age to produce offspring. It can
be summarized in multiple ways. The most detailed is

pk = P (k offspring) = P (k offspring | survival to adulthood)

but in large populations the mean

f = E (number of offspring | survival to adulthood) =
∑

k

kpk

is sufficient, since variability averages out in large, homogenous populations.

Definition: (absolute) fitness (W )

Fitness is a measure of an individual’s ability to reproduce. Most simply,

W = vf

is the expected number of offspring a newborn will produce in its lifetime.

6.2 Theory for Asexuals

One-Generation Allele Frequency Update

Consider two genotypes A and a and let their viabilities be vA and va, their fertilities be fA and fa, and
define the absolute fitnesses as WA = vAfA and Wa = vafa. Then, recursion equations for the population
size of each type after one generation are

NA(t + 1) = WANA(t)
Na(t + 1) = WaNa(t).
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The population frequency of genotype A is given by

pA(t + 1) =
NA(t + 1)

NA(t + 1) + Na(t + 1)
=

WANA(t)
WANA(t) + WaNa(t)

=
WApA(t)

WApA(t) + Wapa(t)
=

WA

W̄ (t)
pA(t),

where W̄ (t) = WApA(t) + Wapa(t) is the average population fitness.

Effect on Population Size

The average population fitness can be written as a ratio of population sizes

W̄ (t) = WApA(t) + Wapa(t) = WA
NA(t)
N(t)

+ Wa
Na(t)
N(t)

=
N(t + 1)

N(t)
.

• W̄ (t) > 1,
the pop-
ulation is
growing,
and

• W̄ (t) < 1,
the pop-
ulation is
shrinking.
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One-Generation Relative Allele Frequency Update

The genotype proportions are changing as well,

pA(t + 1)
pa(t + 1)

=
WApA(t)
Wapa(t)

=
WA

Wa

pA(t)
pa(t)

= wA
pA(t)
pa(t)

by a factor wA = WA

Wa
.

Define the wA as the rela-
tive fitness of a type A in-
dividual with respect to a
type a individual. This al-
lows us to define all rela-
tive fitnesses with respect
to one type of individual.
Note, in this case type a in-
dividuals are the standard
and wa = 1.
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Environmental Effects

Relative fitnesses are useful in another way. Many common environmental effects are canceled in the ratio. As
long as environmental effects are constant across genotypes (i.e. not genotype by environment interactions),
then the same relative fitness will apply in multiple environments, even if the environments have an absolute
fitness effect.
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Specifically, multiplicative environmental effects do not change relative fitness. (Example: a nearby water
source increases viability probability for all genotypes; temperate climate allows the production of twice as
many offspring)

w′A =
mWA

mWa
= wA.

Additive effects do not cancel and will change additive fitness. (Example: when the population density is
high, each individual has 2 fewer offspring)

w′A =
vA (fA − 2)
va (fa − 2)

6= wA.

Selection Coefficient

It is sometimes more convenient to reparameterize as follows:

wA = 1 + s

wa = 1.

Then, when there is no selection, s = 0. The quantity s ∈ [−1,∞] is called the selection coefficient favoring
A. Or, we could parameterize as

wA = 1
wa = 1− s′,

where s′ ∈ [−∞, 1] is the selection coefficient against a.

These two parameterizations are not equivalent even if s = s′.

pA(t+1)
pa(t+1) = wA

pA(t)
pa(t) = (1 + s)pA(t)

pa(t)
pA(t+1)
pa(t+1) = 1

wa

pA(t)
pa(t) = 1

1−s′
pA(t)
pa(t)

One-Generation Change in Allele Frequency

We had that the genotype (allele) frequency at generation t + 1 is

pA(t + 1) =
pA(t)WA

W̄ (t)
=

pA(t)wA

w̄(t)
,

where w̄(t) = W̄ (t)
Wa

is the average relative fitness of the population.

How is the absolute genotype frequency changing in time?

∆pA(t) = pA(t + 1)− pA(t) =
pA(t)wA

w̄(t)
− pA(t)

= pA(t)
wA − w̄(t)

w̄(t)

so the change in absolute genotype A frequency depends on the distance of A’s relative fitness from the
overall mean fitness w̄(t) and the current absolute allele frequency pA(t).

Multi-Generation Relative Allele Frequency Update

Recall the per-generation change in relative allele frequencies:

pA(t + 1)
pa(t + 1)

= wA
pA(t)
pa(t)

.
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We’ve solve these kind of recurrence relations before. By repeated substitution, we obtain

pA(t)
pa(t)

= wt
A

pA(0)
pa(0)

.

The above solution can be
used to solve for t

t =
ln
(

pA(t)
pa(t)

)
− ln

(
pA(0)
pa(0)

)
ln wA

,

telling how long it takes
to change the allele fre-
quency.

wA t wA t
2 6.63 1.05 94.18

1.5 11.33 1.02 232.05
1.2 25.20 1.01 461.81
1.1 48.21 1.001 4597.42

Table. Time t it takes to change allele frequencies

from 1:1 to 99:1 in favor of A.

Multi-Generation Allele Frequency Update

We can also solve the same equation for pA(t) to obtain the time-course of allele A change over many
generations.

pA(t)
pa(t)

= wt
A

pA(0)
pa(0)

pA(t)
1− pA(t)

= wt
A

pA(0)
pa(0)

pA(t)
(

1 + wt
A

pA(0)
pa(0)

)
= wt

A

pA(0)
pa(0)

pA(t) =
wt

A
pA(0)
pa(0)

1 + wt
A

pA(0)
pa(0)

=
wt

ApA(0)
pa(0) + wt

ApA(0)
.
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6.3 Theory for Diploids

Diploid Selection
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• Viability is a person-
specific property.

• Fertility now appears
to be a couple-specific
property.

• View fertility as the per-
son’s ability to con-
tribute to the reproduc-
tive gamete pool.

• A very fertile person
will contribute more ga-
metes than an unfertile
person.

• Or, thought of in an-
other, equivalent man-
ner, more of an unfer-
tile’s gametes will not
successfully unite.

• It no longer matters who
is mating with whom.

viability

random union

random mating & fertility

Viability

The allele frequency at the start of generation t is the same as the allele frequency in the post-selection
gamete pool of generation t− 1 that will randomly united to form generation t.

Let pA(t) be the frequency of allele A in the (t − 1)th post-selection gametic pool or the tth generation at
birth. Then, if there are N individuals in generation t, the expected numbers of each genotype are:

AA: p2
A(t)N Aa: 2pA(t)pa(t)N aa: p2

a(t)N

Assign viabilities (probabilities of survival) to each genotype.

AA: vAA Aa: vAa aa: vaa

The expected number to survive to reproductive age in generation t are:

AA: vAAp2
A(t)N Aa: 2vAapA(t)pa(t)N aa: vaap2

a(t)N

Fertility
These individuals produce gametes in Mendelian proportions (all A for AA types, half A for Aa types, etc), but the
absolute number is determined by selection. Assign fertilities to each genotype. Fertility here is the average number of
gametes that make it into the gametic pool.

AA: fAA Aa: fAa aa: faa

So, each diploid genotype G that survives to adulthood will contribute on average fG gametes to the tth generation
gametic pool. So the numbers of each allele in the pool are:
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Allele Expected Counts
A: fAAvAAp2

A(t)N + fAavAapA(t)pa(t)N
a: faavaap2

a(t)N + fAavAapA(t)pa(t)N

Gamete Pool

To obtain the proportions of each allele at the start of the (t + 1)th generation (or equivalently in the post-
selection gametic pool of the tth generation) we use

proportion of A =
expected number of A

total expected number of alleles

so

pA(t + 1)

=
fAAvAAp2

A(t)N + fAavAapA(t)pa(t)N
fAAvAAp2

A(t)N + fAavAapA(t)pa(t)N + faavaap2
a(t)N + fAavAapA(t)pa(t)N

=
fAAvAAp2

A(t)N + fAavAapA(t)pa(t)N
fAAvAAp2

A(t)N + 2fAavAapA(t)pa(t)N + faavaap2
a(t)N

combine terms

=
fAAvAAp2

A(t) + fAavAapA(t)pa(t)
fAAvAAp2

A(t) + 2fAavAapA(t)pa(t) + faavaap2
a(t)

cancel N

Fitness
We define the absolute fitness of genotype G as WG = fGvG.

We define the relative fitness of genotype G1 with respect to genotype G2 as wG1 =
WG1
WG2

.

With these definitions and the identity pa(t) = 1− pA(t) in the two allele case, the equation can be rewritten as

pA(t + 1) =
wAAp2

A(t) + wAapA(t) [1− pA(t)]

wAAp2
A(t) + 2wAapA(t) [1− pA(t)] + waa [1− pA(t)]2

Note, the denominator is the average fitness of the population at the start of generation t. We define the notation

w̄(t) = wAAp2
A(t) + 2wAapA(t) [1− pA(t)] + waa [1− pA(t)]2 .

One-Generation Allele Frequency Update
Or, another way to follow the absolute A allele frequency change in a single generation.

pA(t + 1) =
wAAp2

A(t) + wAapA(t)pa(t)

wAAp2
A(t) + 2wAapA(t)pa(t) + waap2

a(t)

= pA(t)
pA(t)wAA + pa(t)wAa

w̄(t)
= pA(t)

w̄A(t)

w̄(t)
.

where w̄A(t) is the mean fitness of A-carrying population. Specifically,

w̄A(t) = pA(t)wAA + pa(t)wAa

= P (A from AA | A) wAA + P (A from Aa | A) wAa

and

P (A from Aa | A) =
1
2
P (Aa)

P (A)
=

pA(t)pa(t)

p2
A(t) + pA(t)pa(t)

= pa(t)
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One-Generation Relative Allele Frequency Update
To determine how the relative proportions of each allele change in a single generation, we derive

pA(t + 1)

pa(t + 1)
=

wAAp2
A(t) + wAapA(t)pa(t)

wAapA(t)pa(t) + waap2
a(t)

=
pA(t)

pa(t)
× wAApA(t) + wAapa(t)

wAapA(t) + waapa(t)

=
pA(t)

pa(t)
× w̄A(t)

w̄a(t)
.

One-Generation Change in Allele Frequency

pA(t + 1)− pA(t) =
wAAp2

A(t) + wAapA(t) [1− pA(t)]
wAAp2

A(t) + 2wAapA(t) [1− pA(t)] + waa [1− pA(t)]2

− pA(t)
...

= pA(t)pa(t)
w̄A(t)− w̄a(t)

w̄(t)
*

= pA(t)
w̄A(t)− pA(t)w̄A(t)− pa(t)w̄a(t)

w̄(t)

= pA(t)
w̄A(t)− w̄(t)

w̄(t)

where we have recognized that
w̄(t) = pA(t)w̄A(t) + pa(t)w̄a(t).

6.3.1 Selection Schemes

Kinds of Fitness

Here, we consider various types of fitness schemes for the 3 genotypes AA, Aa, and aa. Here p = pA(t−1).

Type Fitnesses w̄A w̄
Geometric (1 + s)2 : 1 + s : 1 (1 + s)(1 + sp) (1 + sp)2

Additive 1 + 2s : 1 + s : 1 1 + s + sp 1 + 2sp
Recessive 1 + s : 1 : 1 1 + sp 1 + sp2

Dominant 1 + s : 1 + s : 1 1 + s 1 + 2sp(1− p) + sp2

Overdominance 1− s : 1 : 1− t 1− sp q − sp2 − t(1− p)2

Underdominance 1 + s : 1 : 1 + t 1 + sp q + sp2 + t(1− p)2

Type pA(t)
pa(t) ∆pA(t)

Geometric p(1+s)
1−p

sp(1−p)
1+sp

Additive p(1+s+sp)
(1−p)(1+2sp)

sp(1−p)
1+2sp

Recessive p(1+sp)
1−p

sp2(1−p)
1+sp2

Dominant (1+s)p
1+2sp(1−p)+sp2

sp(1−p)2

1+2sp(1−p)+sp2

Overdominance (1−spA)pA

pa−tp2
a

pApa[t−(s+t)pA]
1−sp2

A−tp2
a

Underdominance (1+spA)pA

pa+tp2
a

pApa[(s+t)pA−t]
1+sp2

A+tp2
a

8



Visualizing Dominance Types

Implications

• Multiplicative (Geometric) fitness. Population behaves as if reproducing asexually.

• Additive fitness. Behaves almost like a locus with multiplicative fitness, but the approximation is only
good for s < 0.2.

• Recessive allele. Selection against a recessive allele becomes increasingly less effective as the fre-
quency of the allele declines. If recessive allele a starts at frequency pa(0) = 0.5, initially a will
quickly disappear. It takes 999, 998 generations to reduces from 0.5 to 0.000001 when the allele is
recessive and lethal and only 1375 generations if multiplicative fitness applies with relative weak se-
lection s = −0.1.

• Dominant allele. If A is lethal, it takes one generation to eliminate all A. Otherwise, it is the recessive
case reversed.

Temporal Allele Change by Dominance Types
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Over or Under Dominance

∆pA =
pApa[t− (s + t)pA]

1− sp2
A − tp2

a

When is ∆pA = 0?

• pA = 0 or pa = 0.

• t− (s + t)pA = 0 or pe = t
t+s is the stationary frequency.

For an overdominant allele, the allele frequency pA will approach equilibrium pe from anywhere.

For an underdominant allele, the allele frequency pA will approach 0 if pA(0) < pe or 1 if pA(0) > pe.
In other words, eventually one allele will be lost from the population and which one is lost depends on the
starting state of the population at time 0.

Visualizing Overdominance

pe =
t

t + s

For s = 0.2 and t = 0.1, we have

Visualizing Underdominance

6.4 Multiple Alleles

6.4.1 Haploid

Haploid - Multiple Alleles
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For the asexual haploid case, we have k different alleles Ai, for i = 1, . . . , k and a corresponding relative
fitness wi for each type. For one generation, the recursion equation for allele frequency is

pi(t + 1) =
pi(t)wi

w̄(t)

where
w̄(t) =

∑
i

pi(t)wi.

The change in allele frequency in a single generation is

∆pi(t) = pi(t)− pi(t− 1) = pi(t)
wi − w̄(t)

w̄(t)
.

6.4.2 Diploid

Diploid - Multiple Alleles

For the diploid case, we have k different alleles Ai, for i = 1, . . . , k, and a relative fitness for each genotype
wij , for i < j = 1, . . . , k.

The allele frequency change in one generation is by direct analogy:

pi(t + 1) =

∑k
j=1 pi(t)pj(t)wij∑k

i=1

∑k
j=1 pi(t)pj(t)wij

=
pi(t)

∑k
j=1 pj(t)wij

w̄(t)
=

pi(t)w̄i(t)
w̄(t)

.

Rearrangement provides the standard equations for change in allele frequency in one generation

∆pi(t) = pi(t)− pi(t− 1) = pi(t)
w̄i(t)− w̄(t)

w̄(t)
.

Equilibrium - Multiple Alleles

The equation

∆pi(t) = pi(t)
w̄i(t)− w̄(t)

w̄(t)
.

allows us to identify equilibria from which allele frequency will not stray. ∆pi(t) = 0 whenever pi = 0
or whenever w̄i(t) − w̄(t) = 0. If alleles {3, 6, 17} are to persist at equilibrium in a population then the
following three equations must be satisfied

w̄3(t) = w̄(t)
w̄6(t) = w̄(t)

w̄17(t) = w̄(t),

with all other frequencies p1 = p2 = p4 = · · · = 0.

The existence of a solution to the above equations does not mean that the population will approach and stay
at this equilibrium.
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Stable Equilibrium - Multiple Alleles

It turns out there is a simple condition for stability.

If for all alleles i that are absent from the equilibrium (i.e. pi = 0), then the equilibrium is stable if the
following condition is satisfied at the equilibrium

w̄i < w̄,

So, take the underdominance example where the fitnesses are

11 12 22
1 + t 1 1 + s

To show p1 = 1 is stable, we must show w̄2 < w̄.

w̄2 = p2w̄22 + p1w̄12 < w̄ = p2
2w̄22 + 2p2p1w̄12 + p2

1w̄11

w̄12 = 1 < w̄11 = 1 + t

6.5 Fitness & Evolution

Fitness and Evolution

We are interested in whether the mean fitness of the population is increasing in time.

The mean absolute fitness W̄ cannot always increase for then the population would explode to∞.

In fact, if W̄ (0) > 1, then W̄ (t)→ 1 at which point the population will no longer expand. Or, if W̄ (0) < 1,
then the population will go extinct.

Indeed, if we are going to look for improvement in fitness, we need to look at relative mean fitness w̄, relative
to some fixed standard.

6.5.1 Haploid

Mean Relative Fitness - Asexual
For asexual haploid populations, mean relative fitness is

w̄(t) =
kX

i=1

pi(t)wi.

How does this change over time?

∆w̄(t) = w̄(t)− w̄(t− 1) =

kX
i=1

pi(t)wi −
kX

i=1

pi(t− 1)wi

=
kX

i=1

wi
pi(t− 1)wi

w̄(t− 1)
− w̄(t− 1)

=
1

w̄(t− 1)

"
kX

i=1

pi(t− 1)w2
i − w̄2(t− 1)

#

=
Var(w)

w̄(t− 1)

Interpretation - Temporal Change in w̄

• The more variation in fitness between alleles (genotypes), the faster the change in the mean relative
fitness of the population.

12



• The mean relative fitness is always increasing (or staying constant). It never declines.

• The rate of progress in fitness is proportional to the square of the relative fitness (or selection coeffi-
cient). In contrast, the rate of change in allele frequency is directly proportional to relative fitness (or
selection coefficent).

6.5.2 Diploid

Mean Relative Fitness - Diploid

For the diploid case, the mean relative fitness is defined as

w̄(t) =
∑

i

∑
j

pi(t)pj(t)wij = p2w11 + 2p(1− p)w12 + (1− p)2w22,

where we have reduced to the two allele case and dropped dependence on t. To see how this mean relative
fitness changes with respect to allele 1, take the derivative

∂w̄(t)
∂p

= 2pw11 + 2(1− p)w12 − 2pw12 − 2(1− p)w22

= 2 [pw11 + (1− 2p)w12 − (1− p)w22] .

Next, we will relate this to the change in allele frequency in a single generation.

Mean Relative Fitness - Diploid

The change in allele frequency in a single generation is

∆p(t) = p(t)− p(t− 1)

=
p2(t− 1)w11 + p(t− 1) [1− p(t− 1)] w12

w̄(t− 1)
− p(t− 1)

=
p2(t− 1)w11 + p(t− 1) [1− p(t− 1)] w12 − p(t− 1)w̄(t− 1)

w̄(t− 1)

=
p2w11 + p [1− p] w12 − p

{
p2w11 + 2p [1− p] w12 + [1− p]2 w22

}
w̄

= p(1− p)
pw11 + (1− 2p)w12 − (1− p)w22

w̄

=
p(1− p)

2w̄

∂w̄

∂p

Allele frequency is stable wherever the mean relative fitness curve (w̄(p)) is flat.

Selection on Diploids Cannot be Perfect

AA

Aa

aa

increasing
fitness

• Maximum relative mean fitness in the overdominant case occurs when all individuals are heterozygous, but as soon as this
population mates, homozygotes will appear and decrease the population mean fitness.

AA
increasing

fitness
aa

Aa

• Maximum relative mean fitness in the underdominant case is maximized when the less fit allele is eliminated from the population,
but if the population starts with more of the less fit allele than the more fit allele, the more fit allele will be eliminated first.

13



6.6 Statistical Estimation

Selection and HWE

How do we detect evidence of selection?

Selection is a violation of the HW assumptions, therefore it should lead to HW disequilibrium. Theoretically,
tests for HWE could be used to find evidence of selection (confounded with multiple other possible causes).

Let’s examine this more precisely for the two allele, single locus case.

• At the time of gamete union, the alleles in the post-selection gametic pool unite randomly so at that
instant HWE applies.

• However, we are not likely to observe individuals at gamete union (when the zygote forms). We sample
them in adulthood or later in life after viability probabilities have had a chance to change the genotype
frequencies.

Viability and HWE

After viability selection, the genotype probabilities are obtained as usual

P (11 | survival to sampling) =
P (11, survival to sampling)

P (survival to sampling)

=
v11p

2
1

v11p2
1 + 2v12p1p2 + v22p2

2

=
v11p

2
1

v̄
.

Given these genotype probabilities, the allele frequencies at sampling time are

p′1 = P (11 | survival to sampling) +
1
2
P (12 | survival to sampling)

=
v11p

2
1 + v12p1p2

v̄

So, HWE is true if

(p′1)2 =
(

v11p
2
1 + v12p1p2

v̄

)2

=
v11p

2
1

v̄

2p′1p
′
2 = 2

v11p
2
1 + v12p1p2

v̄

v22p
2
2 + v12p1p2

v̄
=

v122p1p2

v̄

(p′2)2 =
(

v22p
2
2 + v12p1p2

v̄

)2

=
v22p

2
2

v̄

Taking the first equation, the relationship that must hold is

v2
11p

4
1 + 2v12v11p

3
1p2 + v2

12p
2
1p

2
2 = v̄v11p

2
1

= v2
11p

4
1 + 2v11v12p

3
1p2 + v11v22p

2
2p

2
1

and this is only true if
v2

12 = v11v22

It turns out all three equations lead to the same condition v2
12 = v11v22.

The biological implication is that certain kinds of fitness differences will not be detectable as a deviation from
HWE.
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• No fertility difference is visible from tests of HWE.

• Viability probabilities satisfying the above condition, for example if 1 in 2 genotype 11 individuals sur-
vive to sampling, 1 in 8 genotype 22 individuals survive to sampling, and 1 in 4 genotype 12 individuals
survive to adulthood, then the condition is satisfied, but selection is present.

6.6.1 Estimating Viability

Method I: Estimating Relative Viability

Suppose that the population is at a stable equilibrium (overdominance for example). Then, allele frequencies
are not changing in time p′1 = p1. (There is an implicit assumption that there are no fertility effects.)

Then the update equations from birth to sampling

p′1 =
v11p

2
1 + v12p1p2

v̄

p′2 =
v22p

2
2 + v12p1p2

v̄

can be rewritten and to reveal two relationships among the parameters

p1 =
v11p

2
1 + v12p1p2

v̄

v̄p1 = v11p
2
1 + v12p1p2

v̄ = v11p1 + v12p2

p2 =
v22p

2
2 + v12p1p2

v̄
v̄ = v22p2 + v12p1.

Method I: Estimating Relative Viability

There is the other usual relationship p1 + p2 = 1, so there are two free parameters p1 and v11 out of the total
p1, p2, v11, v12, v22.

The likelihood is

L (n11, n12, n22) =
(

n

n11n12n22

)(
v11p

2
1

v̄

)n11 (v122p1p2

v̄

)n12
(

v22p
2
2

v̄

)n22

The data consists of genotype counts n11, n12, n22 as always, so Bailey’s method applies with n = n11 +
n12 + n22.

n11 = n
v11p

2
1

v̄

n12 = n
v122p1p2

v̄

n22 = n
v22p

2
2

v̄

Method I: Testing Relative Viability

Previously, we had tested HWE by looking for significantly non-zero D1. Back then we also used the sam-
pling distribution under the alternative to perform power and sample size calculations. If we could relate are
parameterization in terms of v11 to the one in terms of D1, then we could borrow all our work then and apply

15



it to this case.

D1 = P11 − p2
1

=
v11p

2
1

v̄
−
(

v11p
2
1 + v12p1p2

v̄

)2

=
p2

1p
2
2

(
v11v22 − v2

12

)
v̄

.

If HW disequilibrium is caused by viability selection, then the test for H0 : D1 = 0 is the same as testing
H0 : v11v22 = v2

12.

Method II: Estimating Relative Viability

Consider two classes of individuals that you think are under different selection pressures. If you can design
an experiment in which you expect equal proportions of both types, then you can examine the proportions in
your data for agreement with your expectation.

An example: Suppose you suspect that 11 and 12 individuals have different fitness. If you can design a
controlled cross between 11 and 12 individuals, then you expect 50% of the offspring to be 11 and 50% to be
12. Any deviation from the expected 1:1 ratio could be evidence of selection.

P (12 | survival) =
v12P12

v11P11 + v12P12 + v22P22

=
v120.5

v110.5 + v120.5

=
v12

v11 + v12
.

Let’s suppose we’re measuring relative viability with respect to 11 individuals, so define v = v12 and of
course v11 = 1. Then

P (12 | survival) =
v

1 + v
.

You observe n11 type 11 individuals and n12 type 12 individuals. A Method of Moments estimator for v is

obtained using equation n12 = (n11 + n12)
v

v + 1 or v̂ =
n12

n11
.

It turns out that v̂ can be quite biased, and a better estimator is

v̂ =
n12

n11 + 1
.

Method II: Bias & Variance of v̂

The new estimator v̂ is still a little biased

E (v̂) = v

[
1−

(
v

v + 1

)n]
which can be seen by recognizing that the sampling distribution is

Binomial (n11 + n12, P [12 | survival]) .

The estimator
v̂ =

n12

n11 + 1
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is a ratio of functions of the same order in the counts, so Fisher’s approximation applies. Bootstrap and
jackknife are also valid. The Fisher’s approximate formula is

Var (v̂) ≈ v(v + 1)2

n
.

Method II: Example

Using

v̂ =
n12

n11 + 1

Var(v̂) ≈ v̂(v̂ + 1)2

n
,

how can one test for significantly different viabilities of type 11 and 12 individuals?

To make a very specific example, suppose I hypothesize the following viabilities where u < t.

11 12 22
t u t

This is an example of what kind of selection?

What are my two types of individuals?

How can I design a cross such that my two types of individuals are expected to appear in equal frequencies?

11 12
18 22

v̂ ∈ (0.44, 1.88)

6.6.2 Estimating Fitness

Adding Fertility

11 12 22
Pre-Selection

p2
1 2p1p2 p2

2

↓
Viability Selection

v11p2
1

v̄
2v12p1p2

v̄
v22p2

2
v̄

↓
Fertility Selection

f11v11p2
1

W̄
2f12v12p1p2

W̄

f22v22p2
2

W̄
↓

Gametic Pool

p′1 = p2
1v11f11+p1p2v12f12

W̄
, p′2 = 1− p′1

where p1 and p2

are the allele fre-
quencies in the
gametic pool.

where
v̄ = v11p

2
1 +

v122p1p2 + v22p
2
2

is mean viability.

where W̄ is the
usual mean abso-
lute fitness.
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Comparing Across Generations

One of the few things we can actually observed is the ratio of homozygotes to heterozygotes in each genera-
tion. In the first generation,

R11 =
v11p

2
1

v122p1p2

R22 =
v22p

2
2

v122p1p2

In the next generation, we have

R′11 =
v11p

′2
1

v122p′1p
′
2

=
v11

(
p2

1v11f11 + p1p2v12f12

)2
2v12 (p2

1v11f11 + p1p2v12f12) (p2
2v22f22 + p1p2v12f12)

=
v11

(
p2

1v11f11 + p1p2v12f12

)
2v12 (p2

2v22f22 + p1p2v12f12)
=

v11

2v12

2R11
f11
f12

+ 1

2R22
f22
f12

+ 1
.

Comparing Across Generations - Viability

From the previous slide, we have

R′11 =
v11

2v12

2R11
f11
f12

+ 1

2R22
f22
f12

+ 1
.

When there are no fertility effects f12 = f11 = f22 = 1, and the relative viability is estimated from the
observable ratios as

v11

v12
= 2R′11

2R22 + 1
2R11 + 1

v22

v12
= 2R′22

2R11 + 1
2R22 + 1

When there are fertility effects, the equation cannot be rearranged to provide a relative fitness estimate
v11f11
v12f12

= w11.

Comparing Across Generations - Fitness

In particular, if there are fertility differences, one can show there is a linear relationship between v11f11
v12f12

= w11

and w22, where relative fitnesses are measured with respect to the heterozygote 12.

Instead of considering genotype ratios like R11, consider allele ratio x = p1
p2

. As before, follow the genotype
proportions in time, now lumping viability and fertility selection into one.

11 12 22
x2p2

2 2xp2
2 p2

2

↓
W11x2p2

2
W̄

W122xp2
2

W̄

W22p2
2

W̄

In the next generation,

x′ =
p′1
p′2

=
W11x

2 + W12x

W22 + W12x
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Comparing Across Generations - Fitness

Rearrangement of the above equation yields,

W22

W12
= w22 =

x2

x′
w11 +

x

x′
− x.

Collect x and x′ once and you will obain a linear relationship between w11 and w22. Collect a second pair
x, x′ and you will obtain another linear relationship between w11 and w22. Assuming that w11 and w22 are
not changing between the two experiments but x and x′ do change because of different allele frequencies in
the two sample populations, the intersection of the two lines provides estimates of w11 and w22.

What does it mean if the lines do not intersect or do not intersect in the positive quandrant of the w11 by w22

plane?

Example - Plot

0.00.51.01.52.0

−
1.5

−
1.0

−
0.5

0.0
0.5

1.0
1.5

2.0

wAA

w
aa

Maximum Likelihood Estimation of Selection

We have previously derived (and used already today) recurrence relations for allele frequencies over time
given relative fitnesses w and starting allele frequencies p

pu(t + 1) =
p2

u(t)wuu +
∑

v 6=u pu(t)pv(t)wuv

w̄(t)
.

Suppose you observe allele counts over multiple generations {n1(1), n2(1), . . . , n1(2), n2(2), . . . , }.
Then, the likelihood for the fitness model is

L ({wuv}) ∝
∏

t

∏
u

(pu(t))nu(t)
.

Numerical methods are required to maximize this likelihood over wuv and pu.
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