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Molecular Evolution

• The study of evolutionary biology can be broadly classified
into the study of mechanisms that produce a change and
the pattern that emerges due to these changes.

• The pattern refers primarily to the relatedness i.e
phylogenetic relationships that can be established between
resulting taxa.

• Molecular evolution is the study of mechanisms that shape
the evolution of a group of organisms at the level of DNA,
RNA and proteins.

• Phylogenetic analyses help in the study of the emergent
pattern in these sequences.
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Molecular Evolution cont’d.

• Active research in the last couple of decades has recorded
remarkable advances in both areas, so much so, that today
it is hard to clearly tell where one ends and the other
begins.

• Evolution results primarily from two mechanisms: the
genetic variability (different alleles) brought about by
Mutations and with time, the change in allele frequency in
the population.

• Mutant genes can propagate within a population by
natural selection and/or genetic drift resulting in fixation
and hence altered allele frequency.
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Evolutionary hypotheses

• Recall that the main causes for change in allele frequency
are Mutation,Migration,Genetic Drift and Natural
Selection.

• Hypotheses of evolution vary depending on which of these
forces they regard as most important in shaping evolution.

• The Selectionist Hypothesis regards Natural Selection as
the main (or only) force shaping evolution i.e Darwinian.
Difference between species were thought to consist of
mainly mutations that had been fixed by positive selection.
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that claims that “the overwhelming majority of
evolutionary changes at the molecular level are not caused
by selection acting on advantageous mutants, but by
random fixation of selectively neutral or very nearly neutral
mutants through the cumulative effect of sampling drift
(due to finite population number) under continued input
of new mutations”.

• Note that the term Selectively Neutral does not mean the
alternative alleles of a DNA/protein locus have no effect
on fitness but that selection among different genotypes at
that site is weak. This is the same as saying Nes < 1
where s is the selection coefficient.

• This has major implications in theoretical models of DNA
evolution and tests for selection.
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Neutral Theory: The Null
Hypothesis of evolution

• In observing a new allele at a locus in a population, the
rates of two processes are involved:

• Mutation rate: The rate at which a mutation occurs in a
sequence or the probability that an offspring sequence has
a different allele compared to its parent.

• Substitution rate: An allele substitution occurs when the
newly arisen allele becomes fixed in the population.

item Under the neutral theory, assume that the mutation
rate is µ for a site. In a population of N diploid individuals,
2Nµ mutations occur every generation at this site.

• In a diploid population,the probability of fixation of a new
allele purely by genetic drift i.e. in the absence of selection
is simply the proportion in which it exists in the
population, 1/2N in this case.
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Neutral Theory: The Null
Hypothesis of evolution cont’d

• The substitution rate K can now be computed as

K = (2Nµ)(1/2N)

implying that K = µ.

• Note that in the presence of natural selection, the rate of
evolution K for an advantageous allele will be higher than
the mutation rate K > µ and vice versa for a deleterious
mutation.
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Molecular Clock Hypothesis

• In 1962,Zuckerland and Pauling noticed that the number
of differences in amino acid hemoglobin sequences of
various lineages corresponds roughly with their
evolutionary divergence times as estimated from fossil
records.

• The Hypothesis states that the rate of nucleotide or amino
acid substitution is roughly constant over time and hence
can be used to compute divergence times. (Note how it is
linked to the Neutral Theory)

• It is hard to find a gene or protein that has a constant rate
of evolution over a long period of time.

• Molecular clocks need not, however, be universal. As long
as it works for a group of organisms, it is still useful.
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Visualizing Molecular Evolution

• Evolutionary processes shape DNA/Amino Acid sequences that we are able
to sequence and observe.

• Our ultimate goal,however, is to study the difference we observe, in the
context of relationships between these sequences.

• Suppose that you sequence gene A in species 1,2,3 and 4 and find that site
j has the same amino acid for species 1 and 2 while species 3 and 4 have a
different amino acid at that site. Could species 1 and 2 be closer to each
other evolutionarily, than to 3 and 4?

• May be the change at that site modifies the resultant protein so that the
animal is able to better digest fiber. Now for species 1 and 2 to be more
closely related probably makes sense since they may be herbivorous while 3
and 4 may be carnivorous.

• If this hypothesis is true, was the common ancestor of all four species
herbivorous or carnivorous?

• Phylogenetic Trees help up visualize these relationships.
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Visualizing Molecular Evolution
cont’d

• Phylogenetic trees also
help resolve population
structure.

• Consider the case of the
H3N2 type Influenza
outbreak in 1968 called
the Hong Kong Flu.

• It was later termed “Bird
Flu” because analysis of
related sequences place it
closest to the avian flu
population.
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Types of Mutations

• Difference in sequences arise mainly in the form of
mutations.

• Point Mutations : Change at a single nucleotide due to
chemicals or malfunction of replication machinery. When
they occur in a protein coding region of a gene they can
be:

• Silent/Synonymous mutations cause no change in resultant
amino acid.

• Missense/Non-synonymous mutations cause change in
resultant amino acid.

• Nonsense mutations code for premature stop codon.

• Insertions: Add one or more nucleotides to the DNA
sequence. May cause Frameshifts.

• Deletions: Delete one or more nucleotides from the DNA
sequence. May cause Frameshifts.
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Codon Usage

• Three consecutive nucleotides in a DNA sequence that
codes for a protein, form a Codon.

• Each codon codes for a specific amino acid that can then
be added to a growing amino acid chain formed by the
DNA translation machinery that scans the mRNA
sequence and translates it into an amino acid chain.

• Every position in a codon can have on of 4 possible
nucleotides, giving rise to 43 = 64 possible codons.

• There are, however, only 20 possible amino acids.

• There is thus considerable redundancy in this coding
system.
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Genetic Code
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Types of Data

• Nucleotide sequences: Basic information. Ultimately, differences in any of
the molecular markers we study (and of genetically-based morphological,
behavioral, or physiological traits) are associated with some difference in
the physical structure of DNA.

• Amino acid sequences: Many different nucleotide sequences can code for
the same amino acid sequences due to redundancy in the genetic code.

• Secondary and higher-order structures: Different amino acid sequences may
still end up forming similar structures upon folding.

• Sequence organization: The order of arrangement of genes within a genome
or of introns and exons within a gene may hold important evolutionary
information.

• Expression: Functional differences among individuals may arise due to
different gene expression patterns.

• Copy number variation : Individuals of the same species may carry varying

numbers of copies of the same gene. These are referred to as copy number

polymorphisms.
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Phylogenetic trees

• Phylogenetic trees help illustrate the
relationship between biological entities.

• Each node may have a set of descendants
and is their Most Recent Common Ancestor(
MRCA).

• Each node is called a Taxonomic Unit (TU).
Leaf nodes are known as Observed
Taxomonic Units (OTUs) and internal nodes
are called Hypothetical Taxonomic Units
(HTUs) since their actual value can not be
observed.
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Types of Trees :Rooted and
Unrooted Trees

• A rooted tree is a directed tree and has a
unique node (root) corresponding to the
MRCA of the OTUs in the tree.

• In practice, trees are rooted by including a
distant related sequence called the outgroup
or by introducing additional assumptions
about the relative rates of evolution on each
branch, such as an application of the
molecular clock hypothesis.

• An unrooted tree illustrates the relationship
of the OTUs without making assumptions of
common ancestry.
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Types of Trees:Bifurcating and
Multifurcating

• Both rooted and unrooted tree could be
bifurcating or multifurcating.

• A bifurcating tree is one is which each
internal node gives rise to a maximum of
two children.

• A multifurcating tree allows internal nodes
to have any number of descendants.
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How many Trees?

• The number of possible trees for a set of n OTUs varies
depending on whether the trees are rooted or unrooted,
bifurcating or multifurcating and no so.

• For n OTUs, there are

(2n − 3)!

2(n−2)(n − 2)!

possible rooted bifurcating trees and,

(2n − 5)!

2(n − 3)(n − 3)!

possible unrooted bifurcating trees.

• Note that the number of unrooted trees for n OTUs is
equal to the number of rooted trees for n − 1 OTUs.
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Reading phylogenetic trees
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Maximum Parsimony Methods

• Originally developed for morphological characters.

• Preference to the evolutionary tree that involves “the
minimum net amount of evolution” (Edwards and
Cavalli-Sforza 1963).

• It involves examining all possible trees for a set of
sequences and assigning, for each tree a “parsimony
score”.

• The tree with the lowest score is said to be maximally
parsimonious as it reflects a path from the ancestral nodes
to the observed taxa, that requires minimal changes.
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Maximum Parsimony trees- An
illustration

• Consider an alignment of four DNA sequences for which
you want to infer a phylogeny.

Alpha A C G T
Beta G C G C

Gamma C C A A
Delta C C G T

• Suppose we want to build a maximum parsimony unrooted
tree based on the first column in the alignment.

• For 4 sequences, there are 15 possible rooted phylogenies.
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Computing Parsimony Scores
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Estimating branch lengths

• Branch lengths can be computed by considering all
evolutionary pathways at each variable site and computing
the average number of substitutions for each internal or
external branch.

• When there is only one substitution, this can be assigned
to the external branch leading to the OTU.

• For two or more substitution, there are several pathways of
assigning these (as we saw before).

• The branch length is then simply the average of these.

• This method is called the Average pathway method

Misha Rajaram Stat 536



Stat 536

Misha
Rajaram

Problems with the Maximum
Parsimony approach

• The most parsimonious tree may not be unique.

• Lineages that undergo rapid rates of evolution have long
branches in a tree and these tend to “attract” each other ,
often clustering in the resulting tree. This phenomenon
was identified by Felsenstein and termed long branch
attraction and parsimony methods are particularly
sensitive to it often leading to erroneous phylogenies.

• Parsimony is biased when the base composition of the
DNA sequence is skewed. Even with highly conserved
sequences, it overestimates the number of changes , once
again leading to erroneous phylogenies.
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Markov Chains

• Markov Chains are stochastic processes with Markov
property which states that conditional on the present
state, future states are independent of the past states.

• Consider a simple binary system that can, at each time
point, be in one of two states.

• The transition observed in this system can be represented

using a finite state machine:

• or a State Transition Matrix

P =

(
0 1
0 1

)
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• Markov property states that the conditional probability of
all future states given the current state and all past states
depends only on the current state and in independent of
all past states.

• A Markov Chain can then be described as a sequence of
random variables X1,X2,X3,X4 . . .Xn such that

Pr(Xn+1 = j |Xn = i ,Xn−1 = in−1 . . . ,X0 = i0) = Pr(Xn+1 = j |Xn = i)

where i and j are states in the Markov Chain.
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Transition Probability Matrix

• Probabilities of the nature of Pr(Xn+1 = j |Xn = i),notated
as p(i , j) for convenience, are referred to as Transition
Probabilities

• Every Markov Chain is associated with a Transition
Probability Matrix that contains probabilities of
transitioning from a starting state i to any other state j in
the state space in one time step.

• The probability of transitioning from state i to state j in n
time steps can be given by

p
(n)
ij = Pr(Xn = j |X0 = i)

and be computed as

p
(n)
ij =

X
r∈S,r 6=j

p
(k)
ir p

(n−k)
rj
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Properties of Markov Chains

• Reducibility : A state j is said to be
accessible from another state i if the
the transition probability pij over
n >= 0 time steps.

• Communicating states: States i and j
are said to communicate if i is
accessible from j and vice versa.

• Closed Communicating class : A set
of states C in which every pair of
states are communicating.

• A Markov chain is irreducible if all its

states belong to single

communicating class.


0.2 0.3 0 0.5
0.3 0.1 0.1 0.5
0.1 0.2 0.6 0.1
0.2 0.2 0.2 0.4




1 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 1
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Limiting Distributions

• A Stationary distribution of a Markov chain with transition
matrix P is a vector that satisfies

πj =
∑

i

pi ,jπi

and ∑
j

πj = 1

• A finite state irreducible Markov chain has a limiting
distribution that is also unique when other conditions are
satisfied.
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Continuous Time Markov Chains

• A CTMC is characterized by state changes that can occur
at any arbitrary time. Thus, state space is still discrete,
index is now continuous.

• A CTMC is a thus a discrete-state continuous-time
stochastic process in which for any time
0 ≤ s0 ≤ s1 ≤ s2 . . . ≤ s the conditional pmf satisfies the
Markov property:

Pr(X (t) = j |X (tn) = i ,X (tn−1) = in−1 . . . ,X (0) = i0) = Pr(X (t) = j |X (tn) = i)

• Transition Probability functions (over an interval) are
given by:

pi,j (s, t) = Pr(X (t) = j |X(s) = i)

for 0 ≤ s ≤ t. X
j∈S

pi,j (s, t) = 1
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Time homogeneous CTMC

• A time homogeneous CTMC has a conditional pmf that
satisfies:

pi,j (t) = Pr(X (t + s) = j |X (s) = i)

in other words,
pi,j (s, t) = pi,j (t − s)

i.e. The rate of change is fixed.

• We will restrict the rest of this discussion to time
homogeneous CTMCs.
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• Like in a DTMC

pi,j (s, t) =
X
k∈S

pi,k (s, u)pk,j (u, t)

• Unlike DTMC though, the transition probabilities are now
functions of elapsed time as opposed to the number of
elapsed steps.

• We thus introduce the notion of rates of transitions

• Define rates (probabilities per until time)
• qj is the rate at which the chain leaves state j
• qi,j is the rate from state i to state j
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Rate Matrix Q

• For a small instance of time h, transition probabilities can
now be defined as:

pi,j (t, t + h) = pi,j (h) = qi,j .h + o(h)

for i 6= j
pj,j (h) = 1− qj .h + o(h)

• The matrix Q of all qi ,j is called the infinitesimal rate
matrix.
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Properties of the rate Matrix

• X
j

qi,j = 0

qi,i = −qi = −
X
j 6=i

qi,j

•
dP(t)

dt
= P(t)Q

dπ(t)

dt
= π(t)Q

•
πQ = 0
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• For an irreducible homogeneous CTMC the following
limits exist.

πi = limt−>∞πi (t) = limt−>∞Pji (t)

• Given the rate matrix Q, the corresponding transition
probability matrix can be computed from the relation

P(t) = eQt
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Reversibility

• Consider a Markov chain with a unique limiting
distribution π and realizations . . . ,Xn−1,Xn,Xn+1 . . ..

• Now retrace your steps to get a sequence
. . . ,Xn+1,Xn,Xn−1 . . .. This also turns out to be a
Markov Chain.

• A time reversible Markov chain satisfies

p(i , j)πi = p(j , i)πj
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DNA evolution as a CTMC

Consider a DNA sequence of length m evolving in time by base
substitution. The state space for a site is , therefore
S = A,C ,G ,T Assume that the m sites are iid and constant in
time with probability of being one of the four bases given by

π(t) = πA(t), πC (t), πG (t), πT (t)

Also for each site, let µxy represent the probability of
replacement of base x by base y where x , y ∈ S . We can now
use Q, the matrix containing probabilities of a nucleotide being
replaced by another at an instant of time as the rate matrix
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Q =


−µA µAC µAG µAT

µAC −µC µCG µCT

µGA µGC −µG µGT

µTA µTC µTG −µT


• In the context of DNA substitution/evolution we will refer

to the stationary distribution π as base frequencies and
the µs as substitution/mutation rates.

• We can now compute the probability that a sequence
transitioned from having base x at a position to now
having base y, in time t as

P(t) = eQt
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Models of Nucleotide Substitution

These are CTMCs that make varying levels of assumptions in
specifying the base frequencies pi and the substitution rates µ.
JC69 model (Jukes and Cantor 1969)

• Simplest model that assumes equal base frequencies so
πA = πC = πG = πT = 1/4 and equal mutation rates.

• These assumptions reduce the parameter space to a single
parameter µ, the mutation rate and the rate matrix is
given as:

Q =


− µ µ µ
µ − µ µ
µ µ − µ
µ µ µ −
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• Extends the JC69 model .

• Assumes a different rate for transition (A ¡=¿ G or C ¡=¿
T) , say α and a different rate for transversion (purine ¡=¿
pyrimidine) , say β.

• Base frequencies are still assumed to be equal (=1/4).

• The parameter space now grows to include two parameters
α andβ, expressed in the Q matrix as a ratio κ = α

β .

Q =


− β α β
β − β α
α β − β
1 α β β

 Q =


− 1 κ 1
1 − 1 κ
κ 1 − 1
1 κ 1 1
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• F81 model (Felsenstein 1981)
• Assumes equal mutation rates but unequal base

frequencies.

Q =


− πC πG πT

πA − πG πT

πA πC − πT

πA πC πG −


• HKY85 (Hasegawa, Kishino and Yang 1985)

• Combines ideas from K80 and F81. Assumes unequal base
frequencies and different rates for transition and
transversion.

Q =


− πC κπG πT

πA − πG κπT

κπA πC − πT

πA πC κπG −
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TN93 model (Tamura and Nei
1993)

Assumes unequal base frequencies and different transition rates
α1 and α2, for purines (A ¡=¿ G) and pyrimidines ( C ¡=¿ T)
respectively. A single transversion ratio β is used. This leads to
two transition- transversion ratios, κ1 and κ2.

Q =


− πC κ1πG πT

πA − πG κ2πT

κ1πA πC − πT

πA πC κ2πG −
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Generalized Time Reversible Model

• So far all models have been reversible:

p(i , j)πi = p(j , i)πj

implying that is we see base i at the end of a branch and
base j on the other, there is no way to decide which
belongs to the ancestor and which to the descendant.

• This is the basic reason that rooting trees is often not
possible forcing us to infer unrooted trees.

• The most general time reversible model assumes different
base frequencies and a different substitution rate for each
pair of bases.

Q =


− απC βπG γπT

απA − δπG επT

βπA δπC − ηπT

γπA επC ηπG −
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Rate variation between sites

• So far we have assumed that rates of change at all sites
are equal.

• We may know that rates differ across sites but may not
know a priori which sites have high rates and which have
low rates.

• Rate variation can be modelled using a gamma
distribution.

• It is of utility in computing distances between a pair of
sequences.

• Additionally, there may be reason to believe that a site is
invariant i.e.never changes. Such sites can be assigned a
probability f0 of being invariant.
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Codon models and beyond

• Substitutions in the third position of the codon or sometimes the second, if
they are synonymous, could be under relaxed selective pressure when
compared to substitutions that will be non-synonymous and hence
potentially deleterious to the protein.

• The data can thus be partitioned into two sets under different selective
pressures.

• Also, these account for the fact that sites are non-independent and treat
codons as independent units.

• Another scenario of non-independent sites arises from compensating
mutations that occur in rRNA molecules.

• Two sites , when paired in a secondary structure are favored by natural
selection to continually be paired , so as to maintain the structure.

• Substitution in one may lead to a corresponding substitution in the other.
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Distance matrix methods

• The general idea is to calculate a measure of distance
between each pair of sequences and then find a tree that
predicts the observed set of distances as closely as possible

• Consider each distance to be an estimated of the branch
length separating the two species.

• Each distance then refers to the best unrooted tree for
that pair of sequences.

• In effect, we then have a large number of estimated
two-taxa trees using which we are trying to infer the
n-taxa tree that is implied by these.

• Branch lengths reflect expected amounts of evolution and
are not simply a function of time.
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Computing evolutionary distances

• The evolutionary distance between a pair of sequences can
be computed under a model of substitution.

• Consider the JC69 model. To calculates the distances we
need to compute transition probabilities under this model.

• Let µ denote the substitution rate as defined earlier and
recall that P(t) = eQt .

• Using the Q matrix for the JC69 model, the transition
probabilities over time t can be computed as

Pi,j (t) = 1/4(1 + 3e−µt)

when i = j and
Pi,j (t) = 1/4(1− e−µt)

when i 6= j .

Misha Rajaram Stat 536



Stat 536

Misha
Rajaram

Computing evolutionary distances
cont’d

• Let us now define d as the expected number of nucleotide
substitutions separating the two sequences diverging for a
time t at any one position.

• For the JC69 model d = 3µt
2 since the total rate of change

is 3µ/4

• The probability, therefore, that there is change at a site for
the pair of sequences is

1− Pi,i (2t) = 3Pi,j (2t) = p

where i 6= j .

=
3

4
−

3

4
e−3µt/4

d = −
3

4
ln[1−

4

3
p]
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• An estimate d̂ can be obtained by using an estimate p̂ in
the equation.

• p̂ can be the MOM estimator of p i.e. observed proportion
of changed sites which has a Binomial distribution.

• The large sample variance of d̂ can then be derived using
the delta function, since d is a function of p

V (d̂) =
9p(1− p)

n(3− 4p)
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Computing evolutionary distances
cont’d

• For the K80 model which proposes a rate α for transitions
and rate 2β for transversions, the rate of substitution per
site per time unit is α + 2β.

• Counting all transition substituted pairs as P and all
transversion substituted pairs as Q, we can express these
as

P = (1/4)(1− 2e−4(α+β)t + e−8tβ)

Q = (1/2)(1− e−8tβ)

where t is the time since divergence.
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Computing evolutionary distances
cont’d

• The expected number of nucleotide substitutions is once
again d = 2µt except here µ = α + 2β i.e.
d = 2t(α + 2β) or

d = −(1/2)ln(1− 2P − Q)− (1/4)ln(1− 2Q)

• Estimate d̂ can be obtained by replacing P and Q with
observed values. Variance of d̂ is given by

V (d̂) =
1

n
[c2

1P + c2
2Q − (c1P + c2Q)2]

where c1 = 1/(1− 2P − Q) and c2 = 1/(1− 2Q)
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Gamma distances

• When the substitution rate across sites varies with a
gamma distribution, when the nucleotide substitution
follows the JC69 model, the gamma distance can be
computed as

d =
3

4
α[(1− 4

3
(1− q))−1/α − 1]

where α is the shape parameter of the gamma distribution.
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Building a distance based tree
using the Neighbor Joining method
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Likelihood-Based Phylogeny

• Consider an alignment of n sequences, m sites long.

• We are given a phylogeny with branch lengths and an
evolutionary models that allows us to compute transition
probabilities along the tree.

• In particular, we use the model to compute specific values
for Pi ,j(t), the probability that nucleotide j exists at the
end of branch of length t given that start of the branch
was at nucleotide i .

• We now make two assumptions:
• Assume that all sites are iid.
• Assume that different lineages are independent.
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product of the likelihood at each site

L = P(D|T ) =
Y

i

P(D(i)|T )

where D(i) is data at
the ith site.

• Consider the tree from site i . The likelihood for this tree is the sum, over
all possible nucleotides that may have existed at the interior nodes of the
tree, of the probabilities of each scenario of events

P(D(i)|T ) =
X

x

X
y

X
z

P(A,G ,T ,T , x , y , z|T )
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• The second assumption allows us to decompose this
probability into a product of terms.

P(A, G ,T ,T , x, y, z|T ) = P(x)P(y|x, t1)P(z|x, t2)P(A|y, t3)P(G |y, t4)P(T |z, t5)P(T |z, t6)

• There are methods that economize this computation to
recursively compute the likelihood of subtrees at a node
and move up the tree towards the root.

• Note that as long as the model of substitution used to
compute the underlying transition probabilities is
reversible, the inferred tree is unrooted
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Finding the maximum likelihood
tree

• Essentially, we are searching in a space of trees with
branch lengths.

• We need to find the optimum branch lengths for each
given tree topology.

• We also need to search all tree topologies for one that has
a set of branch lengths that gives the highest likelihood.

• Various algorithms have been proposed to efficiently
search the tree space to accomplish these tasks.
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